...

Что такое SSD? Твердотельный накопитель

Как устроен SSD — разбираемся в деталях

Как устроен SSD — разбираемся в деталях

SSD-накопители стали логичным продолжением эволюции устройств для хранения информации. Новые требования к производительности не могли не сказаться на техническом устройстве SSD-накопителей. Их внутреннее наполнение кардинально изменилось по сравнению с привычным жестким диском.

Корпус

Корпус устройства — неотъемлемая часть накопителя, которая призвана защитить хрупкие внутренние детали. В зависимости от используемого форм-фактора накопителя его внешняя оболочка может кардинально различаться. Так устройства форм-фактора M.2 могут иметь в своем арсенале лишь бумажную или металлизированную наклейку, нанесенную поверх компонентов, или же цельный металлический радиатор как и модели с физическим интерфейсом PCI-E. Основной упор в этом случае возлагается на снижение температуры SSD, а его физическая защита уходит на второй план.

Что касается накопителей форм-фактора 2.5, ситуация диаметрально противоположная. В основном, они поставляются в стандартных пластиковых кейсах, которые защищают внутренности накопителя при неаккуратном обращении. И даже падение устройства не станет для него фатальным в отличие от тех же жестких дисков. Устройствам с интерфейсом SATA свойственен невысокий нагрев, поэтому производители зачастую пренебрегают добавлением каких-либо термопрокладок. Единственным теплоотводом служит непосредственно корпус.

У пользователя, впервые увидевшего разобранный SSD 2.5, может возникнуть резонный вопрос: для чего такой большой корпус, если SSD такой мальенький? Виной тому унификация устройства. Этот формат позволяет устанавливать SSD-накопители в старые ноутбуки или системные блоки, в посадочные места, предназначенные для жестких дисков форм-фактора 2.5. Это позволяет пользователю модернизировать свой ПК минимальными средствами. Также производители получают некоторый «карт-бланш» для размещения внутренних компонентов SSD, так как остается запас пространства для увеличения печатной платы. Различие между разными моделями SSD кроме внутренних компонентов сводится к наклейке, нанесенной на корпус. Она содержит в себе техническую информацию и служит гарантийной пломбой.

Снятие наклейки лишает возможности гарантийного обслуживания.

Интерфейс подключения

HOST Interface — часть накопителя, отвечающая за подключение устройства к системе. SSD-накопители форм-фактора 2.5 имеют стандартные разъемы, свойственные жестким дискам. Для подключения используются два привычных SATA-разъема. Это семиконтактный разъем для подключения шины данных и пятнадцатиконтактный — для подключения питания. Передача данных осуществляется от контроллера к системе и обратно путем использования двух каналов передачи данных. Этот тип подключения имеет ограничение пропускной способности в 6 Гбит/с. Преимущество разъемов SATA — обратная совместимость SATA III и SATA II. Это позволяет подключить современный накопитель к плате, которой уже немало лет.

Для подключения SSD-накопителей форм-фактора M.2 используется современный интерфейс, разработанный как компактная альтернатива SATA-разъему. Все необходимое питание для работы устройства обеспечивается материнской платой. Данный интерфейс имеет в своем распоряжении 75 позиций контактов. В зависимости от конкретной модели часть этих позиций удалена слева, справа или с обеих сторон, образуя соответствующие разрезы. Эти разрезы обозначают ключ, используемый в накопителе: B, M или B&M. Накопители форм-фактора M.2 могут подключаться посредством интерфейса SATA или PCI-Express.

Печатная плата

Печатная плата — базовая основа, на которой располагаются элементы внутренней начинки накопителя. Она представляет собой пластину из диэлектрика с электропроводящими цепями электронной схемы. Компоненты на плате соединены посредством проводящего рисунка и пайки. Размер печатной платы может варьироваться в зависимости от конкретной модели и исполнения. В свою очередь размещение микросхем может быть произведено как лишь на одной стороне платы, так и с обеих сторон.

Контроллер памяти

NAND-controller — «сердце» SSD-накопителя, от которого напрямую зависит производительность устройства. Этот чип — связующее звено между флэш-памятью и непосредственно системой. С помощью него осуществляется обмен данными, операции чтения и записи, шифрование файлов, исправление ошибок и многое другое. Для работы контроллера с завода в него вшита микропрограмма, для которой периодически выпускаются обновления. Служат они для более стабильной и оптимизированной работы устройства. Зачастую производители намеренно не указывают модель установленного контроллера в устройстве, так как он может меняться в зависимости от ревизии. Пользователю остаются лишь программные методы идентификации используемой начинки или снятие наклейки на свой страх и риск.

Флэш-память

Микросхемы флэш-памяти, как правило, занимают подавляющую часть печатной платы и могут иметь разнообразнейшую компоновку. И это неудивительно, ведь они хранят в себе всю информацию, которую пользователь записывает на SSD-накопитель. Самой массовой вариацией флэш-памяти, используемой в накопителях, является 3D NAND с многослойной структурой ячеек памяти. А от типа памяти NAND напрямую зависит долговечность накопителя и его характеристики. Существуют четыре типа NAND памяти: SLC, MLC, TLC и QLC. Различаются они количеством бит информации, хранящихся в одной ячейке, — соответственно от одного до четырех. И правило «чем больше, тем лучше» здесь не работает. Более высокая плотность информации в ячейке ведет к ухудшенным характеристикам памяти и снижению ресурса накопителя.

DRAM кэш и конденсаторы

DRAM кэш представляет собой отдельную микросхему, которая по функционалу напоминает оперативную память компьютера. Она ускоряет работу накопителя, используя некоторый объем памяти для временного хранения данных. Такой подход позволяет ускорить доступ к файлам и стабилизировать износ памяти. Этот чип отсутствует в большинстве бюджетных решений.

Намного реже встречающийся компонент в бытовых SSD-накопителях — конденсаторы. Они призваны помочь в решении проблемы потери электропитания. Неожиданные отключения питания пагубно влияют на информацию, с которой работает SSD-накопитель, а конденсаторы позволяют уменьшить вероятность повреждения и утери данных. Из-за специфичности данной функции используются они в серверных решениях.

HDD или SSD — что выбрать?

HDD или SSD — что выбрать?

«На SSD всё летает» — слышали такое? Компактные, быстрые, современные — казалось бы, пора уже поменять старый жестак на новенький твердотельник. Но не торопитесь. Рассмотрим подробно оба вида накопителей и определим, для каких задач разумно использовать HDD, а где предпочтение лучше отдать SSD.

Жесткий диск

Жесткий диск (или HDD) — устройство хранения данных, принцип записи информации в котором заключается в намагничивании областей на поверхности магнитных дисков (пластин). Магнитный диск представляет собой поверхность, изготовленную из алюминия, керамики или стекла с нанесенным на нее слоем ферромагнетика.

Для организации хранения данных магнитный диск разбивается на дорожки и сектора, а совокупность дорожек, расположенных одна над другой (на нескольких магнитных дисках), называется цилиндром.

В зависимости от объема памяти, внутри корпуса HDD могут находиться до восьми пластин. Пластины крепятся к шпинделю, вращающемуся со скоростью от 4 до 15 тысяч оборотов в минуту (rpm). Запись и чтение информации с пластины осуществляется при помощи магнитной головки.

За управление работой HDD отвечает электронная плата управления. На ней размещены центральный процессор с интегрированной ПЗУ, сервоконтроллер, кэш-память. Объем кэш-буфера в современных HDD достигает 512 МБ.

В зависимости от типоразмера жесткие диски можно разделить на две группы: 2.5-дюймовые HDD и 3.5-дюймовые. Из-за меньших габаритных размеров первые нашли массовое применение в ноутбуках. Диски формата 3.5″ повсеместно применяются в персональных компьютерах, сетевых хранилищах и системах видеонаблюдения.

В зависимости от области применения жесткие условно делятся на несколько классов:

1) Жесткие диски для персонального компьютера

2) Диски для NAS

3) Серверные HDD

4) Для систем видеонаблюдения

Твердотельный накопитель

Твердотельный накопитель (или SSD) — устройство, использующее для хранения информации флеш-память.

Существует 4 типа флеш-памяти применяемых в SSD:

  1. SLC (Single-Level Cell) — память с одноуровневой структурой ячеек. В ячейке SLC памяти может храниться только 1 бит. SLC-память характеризуется высокой надежностью и скоростью доступа к данным, большим числом циклов перезаписи, а также высокой стоимостью (цена за 1 ГБ памяти).
  2. MLC (Multi-Level Cell) — память с многоуровневой структурой ячеек. В одной ячейке MLC памяти может храниться 2 бита. MLC память обладает меньшей надежностью и выносливостью (количество циклов перезаписи), но при этом и стоит дешевле чем SLC.
  3. TLC (Triple-Level Cell) — память с тремя битами в ячейке. Следующая ступень развития флеш-памяти. Обладает меньшим количеством циклов перезаписи и скоростью доступа к данным. Но цена за гигабайт памяти гораздо ниже, чем у MLC.
  4. QLC (Quad-Level Cell) — память с возможностью хранить 4 бита в одной ячейке. Последняя (на текущий момент) ступень развития флеш-памяти. По сравнению с предшественниками, обладает меньшей надежностью и скоростью доступа к данным, но гораздо привлекательнее по соотношению стоимость/объем памяти.

Помимо различных типов ячеек для флеш-памяти существует такое понятие, как многослойность. До определенного момента времени производитель наращивал емкость кристалла памяти за счет увеличения количества бит в одной ячейке и уменьшения физического размера ячейки (техпроцесс). Но бесконечно уменьшать размер ячеек нельзя, как и увеличивать их плотность.

На смену двумерной (планарной) памяти пришла трехмерная многослойная память 3D NAND. Сейчас производители освоили процесс производства 96-слойной флеш-памяти 3D NAND, а также представили образцы 128-слойной флеш-памяти.

Кроме типа флеш-памяти есть еще один важный момент, на который необходимо обратить внимание при выборе SSD накопителя — используемый контроллер.

Контроллер управляет операциями чтения/записи данных в ячейки памяти, следит за их состоянием, выполняет коррекцию ошибок, выравнивание износа ячеек, а также другие вспомогательные функции.

В зависимости от используемого контроллера, показатели скорости работы двух SSD, построенных на одной и той же памяти, могут значительно различаться в пользу накопителя с более современным контроллером.

На момент написания статьи актуальными котроллерами являются: SMI SM2263XT, SMI SM2262EN, Phison PS5012-E12, Phison PS5008-E8, Realtek RTS5762, RTS5763DL, Marvell 88ss1093, Samsung Phoenix.

1) SSD накопители SATA — подключаются по интерфейсу SATA3, скорость линейной записи достигает 500 Мбайт/с, чтения — 540 Мбайт/с. Данные накопители можно встретить в ПК и ноутбуках средней ценовой категории.

2) SSD накопители M.2.

2.1) Без поддержки NVMe — подключаются в M.2 разъем, скорость линейной записи достигает 530 Мбайт/с, чтения — 560 Мбайт/с.

2.2) С поддержкой NVMe — подключаются в M.2 разъем, скорость линейной записи достигает 2500 Мбайт/с, чтения — 3400 Мбайт/с. Встречаются в компьютерах и ноутбуках средне-высокого ценового диапазона.

3) SSD накопители PCI-E — подключение выполняется через разъем PCI-E(в большинстве своем это адаптер PCI-E в который установлен SSD M.2 с поддержкой NVMe), скорость линейной записи может достигать 3000 Мбайт/с, чтения — 3400 Мбайт/с.

Что лучше?

Несмотря на все прелести SSD, твердотельники пока не могут полностью вытеснить HDD с рынка. И вот почему:

Характеристика

SSD: что это и для чего нужен

Впервые предшественник твердотельного накопителя появился в 1978 году и широкой известности не получил. Далее конструкция и тип памяти накопителя нового формата претерпели значительные изменения, пока не пришли к своему практически современному виду – небольшой плате с контактами для подключения и рабочими модулями. Появившийся в 1989 году Flashdisk компании Toshiba стал первым коммерческим флэш-накопителем с NAND-памятью и стоил тогда 5000 долларов (11 000 в современном эквиваленте).

Типы памяти и ресурс SSD дисков

В отличие от своих «прародителей», работавших на памяти NOR и DRAM, современные SSD построены на памяти NAND – как и тот самый Flashdisk. Под словосочетанием «типы памяти» могут подразумеваться технологии памяти или типы ячеек, в которые записываются данные в виде бит. На момент написания этой статьи они представлены в таком виде:

  • SLC (Single Level Cell), где в каждой ячейке хранится по одному биту;
  • MLC (Multi Level Cells) – несмотря на нелогичное название, здесь всего два бита;
  • TLC (Triple Level Cells) с тремя битами на ячейку;
  • QLC (Quadruple Level Cells) – четыре бита на ячейку.

3D NAND – отдельная технология памяти, в которой ячейки как бы накладываются друг на друга, позволяя вместить больше ячеек и больше данных при тех же размерах SSD.

В чем же разница между ними?

Память типа SLC требует больше ячеек для хранения информации и стоит дороже, если сравнивать ее с MLC и другими типами, так как у нее больше ресурс перезаписи. Для сравнения:

  • SLC — до 100 000 циклов перезаписи;
  • MLC — 3000–35 000 циклов перезаписи;
  • TLC — 300–3000 циклов перезаписи;
  • QLC — 150–1000 циклов перезаписи.

Но почему же производители продолжают «уплотнять» битами ячейки, если это ведет к снижению ресурса диска? Постоянная работа над оптимизацией процессов и технологии изготовления массива памяти (тех самых чипов) позволила увеличить ресурс циклов перезаписи во много раз. Чтобы узнать, сколько в теории способен проработать твердотельный накопитель, достаточно обратить внимание на показатели TBW (Total bytes to be written) и MTBF (Mean time between failures).

TBW показывает, какое количество данных можно перезаписать до того, как SSD станет непригодным для записи – все верно, после отказа с них можно считывать информацию, но не записывать. Так, накопитель с TBW 600 TB способен гарантированно перезаписать 600 терабайт данных – весьма впечатляющее число. MTBF – менее информативный показатель, так как выражается в часах работы до отказа.

Что находится внутри SSD?

SSD типа 2,5″ выглядит как обычный жесткий диск такого же формата. Но стоит снять крышку корпуса – разница заметна сразу же. Внутри можно увидеть печатную плату с чипами – массивами памяти и контроллером вместо металлических пластин и подвижной считывающей головки.

SSD формата M.2 вообще не имеют корпуса. Есть корпус или нет – компоненты твердотельного накопителя остаются теми же: контроллер является по сути «мозгом» диска, а все данные хранятся на чипах памяти. Также на плате можно найти преобразователь напряжения, микросхему хранения программного обеспечения и буфер памяти, правда, последний встречается не во всех моделях.

Принцип работы SSD

Память твердотельного диска работает на транзисторах, упорядоченных определенным образом. Каждая ячейка имеет от одного до состояний заряда в зависимости от типа памяти – SLC, MLC, TLC или QLC. Заряд означает состояние ячейки: 1 – разряжена, 0 – заряжена.

Контроллер обрабатывает данные и запускает по ячейкам ток, проходящий через всю цепочку транзисторов. В результате ячейки с данными получают состояние 0. В ячейке есть два транзистора или затвора – управляющий и плавающий. Ток проходит через плавающий затвор, а электроны поступают в управляющий канал, создавая положительный заряд и записывают информацию.

Способы подключения SSD диска

SSD формата 2,5″ подключается к разъему SATA и его модификациям (SATA II и SATA III). Компьютер или ноутбук, выпущенный после 2012 года, вероятнее всего, будет снабжен разъемом типа SATA III с пропускной способностью 600 Мбайт/с. Если же установить накопитель SATA III в более старый разъем, скорость передачи данных будет ниже. Такие диски часто используются для апгрейда старых компьютеров и ноутбуков.

SSD формата M.2 в виде узкой длинной карты помещается не в специальный отсек, а крепится к материнской плате через разъем M.2. Однако здесь есть свои особенности: разъем накопителей M.2 может также быть типа SATA или NVMe/PCIe. Внешне это выражается в разном типе контактов. Они имеют одну или две прорези – так называемый ключ. M.2 SATA обладает пропускной способностью в 560-600 Мбайт/с, а PCI-Express показывает скорость до 3500 Мбайт/с в версии 3.0 и до 4000 Мбайт/с в версии 4.0.

Еще один любопытный факт – формат SSD M.2 имеет одинаковую ширину, но отличается по длине и представлен в четырех вариантах: 2230, 2242, 2260 и 2280, где 22 – это ширина, а остальные цифры – длина планки. Размер 2280 стал самым популярным среди накопителей такого формата.

Типы контроллеров

Контроллер – процессор твердотельного накопителя, отвечающий за обработку данных, их распределение, стирание, поиск «мусорных» данных, а также контроль над уровнем износа ячеек и его уравновешивание. SSD может быть от любого производителя, но чип контроллера чаще всего встречается от нескольких брендов:

  • отличаются поддержкой шифра AES, надежны и удобны. Иногда при переполненном кэше падает скорость передачи данных;
  • хороший баланс между высокой производительностью и доступной ценой;
  • обеспечивают высокую скорость работы, но увеличивают стоимость накопителя;
  • недорогие; скорость передачи данных падает, если на диске осталось мало свободного места.

Скорость чтения и записи

Как было сказано выше, скорость передачи данных зависит от интерфейса твердотельного накопителя: диск с SATA III поддерживает до 600 Мбайт/сек, а PCI-Express 3.0 — до 3500 Мбайт/с и до 4000 Мбайт/с в версии 4.0. Но и это не предел – при подключении SSD к PCIe 4.0 по четырем линиям скорость может достигать 7,9 Гбайт/с.

Эти цифры показаны при работе в идеальных условиях, на практике же пропускная способность зависит от контроллера, срока эксплуатации и объема заполнения данными диска, наличия кэша и других параметров.

Максимальная производительность может потребоваться, если только SSD нужен для обработки тяжелых файлов (создание 3D, монтаж видео и так далее) или сборки топового геймерского компьютера. Для комфортной повседневной работы и отдыха будет достаточно обычного SSD среднего уровня, а для «возрождения» стареющего ПК или ноутбука подойдет и более дешевый накопитель.

Кэш SSD

Зачем SSD нужен кэш? В кэш помещаются обрабатываемые файлы перед записью на сам накопитель, а также часто используемые данные, за счет чего уменьшается время доступа к ним.

Накопители могут обходиться без кэша (он же буфер), особенно с SLC-памятью, но на самом деле кэш значительно ускоряет работу устройства. Особенно это заметно, когда накопитель одновременно выполняет несколько процессов чтения и записи, запущенных разными программами.

В некоторых накопителях вместо DRAM-кэша встречается SLC-кэш – небольшое количество SLC-ячеек, которые поддерживают высокую скорость передачи данных. SSD без кэша использует вместо него оперативную память ноутбука или компьютера.

Преимущества и недостатки SSD дисков

SSD выигрывают у жестких дисков по следующим параметрам:

  • высокая производительность;
  • бесшумная работа и устойчивость к ударам и тряске благодаря конструкции без движущихся механизмов;
  • больше количество произвольных операций ввода-вывода (IOPS) по сравнению с HDD – быстрее обработка данных;
  • низкая чувствительность к воздействию электромагнитных полей;
  • низкое энергопотребление;
  • меньший нагрев, за исключением мощных накопителей NVMe – они могут сильно греться и даже снабжаются радиатором для отвода тепла;
  • меньшие габариты и вес.
  • ограниченное количество циклов перезаписи – от 150 до 100 000;
  • стоимость по-прежнему выше, чем у HDD;
  • невозможность восстановления данных после применения команды TRIM, удаляющей информацию из ячеек;
  • производительность может снижаться при обработке файлов большого объема, особенно это заметно в бюджетных моделях и в моделях небольшой емкости;
  • чувствительность к скачкам напряжения – сгорает и контроллер, и память. Правда, это можно предотвратить использованием стабилизатора напряжения, да и с ноутбуками такая ситуация случается очень редко.

В любом случае, SSD будет полезен тем, кто хочет добиться высокой производительности для решения ресурсоемких задач: обработки графики, видео- и аудиофайлов. Любители игр также оценят прирост быстродействия – для них SDD уже относится к категории must-have.

Также это недорогое и простое решение для апгрейда старого компьютера или ноутбука: SSD даже небольшой емкости, на котором будет установлена операционная система, значительно повысит производительность, а старый HDD можно использовать в качестве хранилища файлов.

На SSD большой емкости можно полностью клонировать содержимое HDD без необходимости переустановки программ и операционной системы и наслаждаться высокой производительностью любимого ноутбука или компьютера.

При подготовке материала использовались источники:
https://club.dns-shop.ru/blog/t-101-ssd-nakopiteli/53419-kak-ustroen-ssd-razbiraemsya-v-detalyah/
https://club.dns-shop.ru/blog/t-107-jestkie-diski/22505-hdd-ili-ssd-chto-vyibrat/
https://www.technodom.kz/cms/blog/ssd-chto-eto-i-dlya-chego-nuzhen

Оцените статью