...

Программа интегрирования что это

Программа интегрирования что это

При обучении аналитическому дифференцированию и интегрированию можно применять современные пакеты программ компьютерной алгебры (например, Derive), но гораздо интереснее для обучающихся, если они элементы этих пакетов могут построить сами, что тем более важно, поскольку эти пакеты, несмотря на существенный прогресс в этой области, не лишены многих недостатков. Например, программа моделирования аналитического дифференцирования [1] на языке Турбо — Полог имеет вид:

dif ( symbol , symbol )

dif ( «d / dx sh(x)», «ch (x)»).

dif («d / dx ch(x)», «sh(x)»).

dif («d/ dx cos(x)», » — sin (x)»).

В процессе работы этой программы ЭВМ запрашивает цель Goal:dif («d/ dx cos(x)» , Y). После ввода этой цели получаем ответ: Y = — sin(x). Цель может быть описана в самой программе. Например, добавив к ней

dif ( » d / dx cos(x)», Y), write («\n d / dx cos(x)=», Y).

Получим в автоматическом режиме: d / dx cos(x) = — sin(x). Для построения программы интегрирования нужно предикат дифференцирования dif заменить на предикат интегрирования int. В качестве клауз взять:

int («sh(x)» , «ch(x) + c «).

int («ch(x)» , «sh(x) + c» ).

int («cos(x)» , «sin(x) + c» ).

Цель для автоматического решения задачи интегрирования cos(x) запишется в виде:

int («cos(x)» , Y ) , write («\n integral of cos(x) = » , Y ).

Решение имеет вид: integral of cos(x) = sin(x) + c .

Фрагмент программы на языке Турбо-Паскаль для аналитического интегрирования задач [1] имеет вид:

VAR NAME: STRING[20] ;

WRITELN(‘ The expression is : sin(x) ? , yes or no ‘);

IF NAME = ‘yes’ then BEGIN writeln(‘ The integral is: -cos(x) + c ‘);

WRITELN(‘For continue to push the Enter ‘) ; READLN ; GOTO 1000 END ;

WRITELN(‘Syntax error . Process Terminated.’);

Если программа доходит до конца, не найдя нужной функции, печатается сообщение о синтаксической ошибке.

Эти задачи использовались при проведении практических занятий по дисциплине «Математическая логика и теория алгоритмов» на факультете ПМ — ПУ СПбГУ.

1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т 1, 2 . — М.: ГИТТЛ . 1951- 696 с., 863 c.

Калькулятор Интегралов

Калькулятор Интегралов

Вычисление интегралов онлайн
— по шагам и с графиками!

Посетите Калькулятор Производных!
Integral Calculator in English
Calculadora de Integrales en español
Integralrechner auf Deutsch

Калькулятор Интегралов позволяет вычислять интегралы и первообразные функций онлайн — совершенно бесплатно!

Наш Калькулятор позволяет проверить решение Ваших математических заданий. Он поможет вам с решением задачи показывая весь ход решения шаг за шагом. Поддерживаются все виды интегрирования включая специальные функции.

Калькулятор Интегралов поддерживает вычисление определённых и неопределённых (первообразных функций) интегралов включая интегрирование функций с несколькими переменными. Кроме этого Вы можете проверить результат своего решения! Интерактивные графики помогут представить и лучше понять функции интегралов.

Чтобы узнать больше о том как пользоваться Калькулятором Интегралов, загляните в раздел «Справка» или ознакомьтесь с примерами.

Ну что ж, теперь — вперед! Успешного интегрирования!

Введите функцию, которую вы хотите проинтегрировать в Калькулятор Интегралов. Не вводите «f(x) =» часть и дифференциал «dx«! Калькулятор Интегралов сразу показывает математическое выражение в графическом виде, прямо в процессе ввода. Убедитесь, что это выражение соответствует тому, что Вы хотели ввести. Используйте скобки если понадобится, например «a/(b+c)«.

В разделе «Примеры», приведены некоторые из функций которые Калькулятор Интегралов способен вычислять.

После того как Вы закончили вводить вашу функцию, нажмите «=» и Калькулятор Интегралов выдаст результат.

В разделе «Настройки» переменная интегрирования и пределы интегрирования могут быть установлены/изменены. Если пределы интегрирования не будут указаны, то будет вычислена только лишь первообразная функция.

Щелчок мышки на примере вводит его в Калькулятор Интегралов. Простое наведение мышки — показывает текст выражения.

Настройте параметры калькулятора:

Переменная интегрирования:
Верхний предел (до): +∞
Нижний предел (от): –∞
Использовать только численное интегрирование?
Упрощать выражения интенсивнее?
Упрощать все корни?
(√ x² станет x, а не |x|)
Использовать комплексные числа (ℂ)?
Использовать числа с запятой вместо дробей?

Генератор заданий для тренировки позволяет сгенерировать сколько угодно различных случайных заданий.

Ниже Вы найдете настройки конфигурации и один из предложенных вариантов задания. Вы можете взяться за его решение (тогда оно будет введено в Калькулятор) или сгенерировать новое.

Вычисляем интеграл: Введите Ваш результат:

Следующее выражение будет вычислено:

Загрузка … пожалуйста подождите!
Это займет несколько секунд.

Это не то, что Вы имели ввиду? Используйте скобки! В случае необходимости, выберите переменную и пределы интегрирования в разделе «Настройки«.

Поддержка

Вам помог мой калькулятор? Расскажите своим друзьям об этом Калькуляторе и Вы тоже сможете мне помочь!

Результаты вычислений

Наверху страницы введите функцию, которую Вы хотите проинтегрировать. Переменная интегрирования, пределы интегрирования и другие параметры могут быть изменены в разделе «Настройки«. Нажмите «=» чтобы запустить интегрирование/нахождение первообразной функции. Результат будет показан ниже на этой странице.

Как работает Калькулятор Интегралов

Для тех кому интересны технические подробности, в этой части рассказывается как устроен и работает Калькулятор Интегралов.

Сначала синтаксический анализатор (па́рсер) анализирует исходное математическое выражение. Он преобразует его в форму более удобную для компьютера, а именно в форму дерева (см. картинку ниже). В процессе такого преобразования, Интегральный Калькулятор должен соблюдать порядок операций с учетом их приоритета. Так же, как и то, что в математических выражениях знак умножения часто опускается, например, мы обычно пишем «5x» вместо «5*x». Калькулятор Интегралов должен уметь понимать такие случаи и сам добавлять знак умножения.

Па́рсер написан на JavaScript, и основывается на алгоритме сортировочной станции, поэтому может исполняться прямо в браузере. Это дает возможность генерировать удобочитаемое выражение на ходу, преобразуя получающееся дерево в код для LaTeX (Ла́тех). С помощью MathJax происходит генерация картинки и ее отображение в браузере.

По нажатию кнопки » Проверка решения» должен решить сложную задачу по определению являются ли два математических выражения равными друг другу. Разница между выражениями вычисляется и упрощается с помощью Ма́ксимы настолько, насколько это возможно. К примеру, это может быть переписывание тригонометрических/гиперболических функций в их экспоненциальные формы. Если удается упростить разницу до нуля — задача выполнена. В противном случае, применяется вероятностный алгоритм, который вычисляет и сравнивает оба выражения в случайно выбранных местах. В случае с первообразной, вся процедура повторяется для каждой производной, т.к. первообразная может отличаться константой.

Интерактивные графики функций вычисляются в браузере и отрисовываются на Сanvas («Холст») из HTML5. Для каждой математической функции, которая должна быть отрисована, Калькулятор создает функцию JavaScript, которая затем вычисляется с шагом, необходимым для правильного отображения графика. Все сингулярности (например полюса) функции обнаруживаются в процессе отрисовки и обрабатываются отдельно. Управление жестами для мобильных устройств сделано на основе hammer.js.

Если у Вас есть вопросы или пожелания, а так же идеи как улучшить Калькулятор Интегралов, пожалуйста пишите мне на e-mail.

© David Scherfgen 2023 — all rights reserved.

Перевод сайта: Timur Saitov

Онлайн Вычислитель интегралов

Wolfram|Alpha является замечательным инструментом для нахождения первообразных и вычисления определенных интегралов, двойных или тройных интегралов, а также несобственных интегралов. Более того, она строит графики, предлагает альтернативные формы ответов, а также другую полезную информацию для развития вашей математической интуиции.

Integral results with plots, alternate forms, series expansions and answers

Рекомендации по составлению запросов

Вводите запросы на обычном английском языке. Использование скобок, в случае необходимости, позволяет избежать неоднозначностей в запросе. Вот некоторые примеры, иллюстрирующие запросы для вычисления интеграла.

Access instant learning tools

Get immediate feedback and guidance with step-by-step solutions for integrals and Wolfram Problem Generator

Step-by-step solutions for integrals with detailed breakdowns and unlimited Wolfram Problem Generator eigenvalue practice problems

  • Пошаговые решения
  • Wolfram Problem Generator

Что такое интегралы?

Интегрирование является важным инструментом математического анализа, который вычисляет первообразную или дает площадь под графиком функции.

Неопределенный интеграл функции f(x), обозначаемый ∫f(x) dx, определяется как первообразная от f(x). Другими словами, производная от ∫f(x) dx равняется f(x). Поскольку производная от постоянной равна нулю, неопределенные интегралы определены с точностью до произвольной постоянной. Например, ∫sin(x) dx=−cos(x)+постоянная, потому что производная от −cos(x)+постоянная равняется sin(x). Определенный интеграл функции f(x) на отрезке от x=a до x=b, обозначаемый ∫baf(x) dx, определяется как суммарная площадь со знаком между кривой f(x) и осью абсцисс на отрезке от x=a до x=b.

Оба типа интегралов связаны друг с другом основной теоремой анализа. Она утверждает, что если функция f(x) является интегрируемой на отрезке [a,b] а F(x) является ее непрерывной первообразной, то ∫baf(x) dx=F(b)−F(a). Таким образом, ∫π0sin(x) dx=(−cos(π))−(−cos(0))=2. Иногда необходимо найти приближенное значение определенного интеграла. Распространенным методом вычисления приближения является размещение тонких прямоугольников под графиком функции и суммирование их площадей со знаком. Wolfram|Alpha может вычислять значения для широкого ряда интегралов.

Как Wolfram|Alpha вычисляет значения интегралов

Wolfram|Alpha находит значения не таким образом, как это делают люди. Она использует команду Integrate системы Mathematica, которая является результатом огромного объема математической и вычислительной научно-исследовательской работы. Команда Integrate вычисляет интегралы не так, как человек. Она использует эффективные и общие алгоритмы, часто включающие в себя сложные математические вычисления. Наиболее часто это происходит одним из двух способов. В первом — интеграл вычисляют в общем виде с неопределенными коэффициентами, результат дифференцируют и решают уравнения для этих коэффициентов так, чтобы получалось конкретное подынтегральное выражение. Даже для достаточно простых интегралов, генерируемые уравнения могут быть очень громоздкими, а для их решения могут требоваться сильные возможности системы Mathematica в алгебраических вычислениях. Другой подход, используемый системой Mathematica для вычисления интегралов, состоит в записи подынтегрального выражения в терминах обобщенных гипергеометрических функций и использовании ряда тождеств между функциями из этого весьма общего класса математических функций.

Несмотря на то, что эти эффективные алгоритмы дают Wolfram|Alpha возможность быстро находить значения интегралов и позволяют ей работать с широким рядом специальных функций, для неё также важно уметь вычислять интегралы так, как это делал бы человек. Поэтому Wolfram|Alpha имеет алгоритмы пошагового интегрирования. Они используют совершенно другую технику интегрирования, имитирующую способ решения интегралов, предпринимаемый людьми. Сюда входит интегрирование методом подстановки, интегрирование по частям, использование тригонометрических подстановок и метод Остроградского.

При подготовке материала использовались источники:
https://science-education.ru/ru/article/view?id=1037
https://www.integral-calculator.ru/?ref=website-popularity
https://ru.wolframalpha.com/calculators/integral-calculator

Оцените статью